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Mapping one network into another

- We would like simple understanding of complex systems
- Subnetworks, motifs, model reduction, ...

But we also want to preserve meaning
- What is a good model of a cat?

Understanding how complex systems may arise from Norbert Wiener
Pioneer of stochastic processes

Sim p|er SyStemS and inventor of Cybernetics.

"The best material model of a
cat is another, or preferably the

How to reconcile? e

- Look for relationships between large (complex) and small (simple)
networks that preserve structure and function.




Comparing networks by morphing them

+ How can we compare different networks? /]
- Different number of species
- Different number of reactions 1_ / '|'_.|.
- Apparently unrelated connectivity T_'I' / _T
+ How is structure related to function and performance? T_/

- Does antagonism (in network structure) guarantee bistability (in function)?

+ We morph networks onto one another (structurally)

so that they emulate each other (‘s function)
- Deterministic version of simulation of reactive systems
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Morphisms of Antagonistic
Networks




Antagonistic Networks
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A Consensus Algorithm
- Approximate Majority (AM) Algorithm

- Uses a third "“undecided” population b
- Disagreements cause agents to become undecided
- Undecided agents agree with any non-undecided agent
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A Simple Population Protocol for Fast Robust
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A Biological Implementation

Approximate Majority (AM)

T
1) Bistable
Even when initially x=y (stochastically)

2) Fast (asymptotically optimal)
O(log n) convergence time

3) Robust to perturbation
above a threshold, initial majority wins whp

Dana Angluin - James Aspnes - David Eisenstat

A Simple Population Protocol for Fast Robust
Approximate Majority 2007

Epigenetic Switch
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Figure 1. Basic Ingredients of the Model

Theoretical Analysis of Epigenetic
CeII Memory by Nucleosome Modification
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Not always that simple

- The epigenetic switch seems a direct biological o g
implementation of an algorithm P %@Aii

- Although we may have to qualify that with some notion of
approximation of the (enzymatic) kinetics

- In most cases the biological implementation seems
more indirect or obfuscated
- "Nature s subtle but not malicious - Einstein” Ha! think again!
- Other implementations of Approximate Majority seem more &~ 7z
convoluted and approximate 8




The Triplet Model of Influence Tahbtion

(mass action) catalysis -o

inhibit x
'“h'ki'“o“ For example:
high =—x -+ low — xishigh + 5. m— xz—}— X is low .[ \
(modified) ™ T (unmodified) o X -
activation '
actlvate X l
Usually modeled by triplet motif AN
sigmoid (e.g. Hill or -
Reinitz) functions We modellthem by.
4 mass action reactions over - -
3 species Xy, Xy, X5 Vs i ~~~~~ | l J
pd X ez X1 e— X =
biological mechanism: They actually implement a |_ T
(e.g.) multisite Hill function of coefficient 2:
phosphorylation . ;
: Xt K, > Xo ¥ A
- Approximate Majority




Network Emulation Ml emulates AM

- For any rates and initial conditions of AM, we can find some rates and initial
conditions of Ml such that the (6) trajectories of Ml retrace those (3) of AM:

; J o il
~YiZ X _T \ (3 species)

. initialize:
: N2
. Z=X
1.5—3 T

I_f 1—E

i [ gr— E =X
053 / S 0.5 | (y2 0

b 0 ] Y1= X
L e B R e oA

0 1 2 3 4 : 5

R AR Yo = Xo)

(6 species on 3 trajectories) (3 species on 3 trajectories)

- How do we find these matching parameters? By a network morphism! 10




CRN Morphisms

A CRN morphism from (S, R) to (S, R)
written m € (S,R) = (S, R)

s a pair of maps m = (mg, mg)
a speciesmapms €S — S
a reaction map mgz € R - R

preserve enough
network structure
preserve enough
chemical stoichiometry

reactant morphism mST - p = ’ﬁ . mRT

stoichiomorphism QY- -Mmep =mg- (/ﬁ

@ is the stoichiometric matrix and p is the related reactant matrix. mg and
mg, are the characteristic 0-1 matrices of the morphism maps mg (on
species) and mg (0N reactions). —Tis transpose.

Mappings (symmetries)
between two networks

T -

I’qu— X)e— X,

[
Lo

You— Yie— Yo —

LT w

11




Network Emulation: NCC emulates M

- For any rates and initial conditions of Ml we can find some rates and initial
conditions of NCC such that the (18) trajectories of NCC retrace those (6) of Ml
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Emulations Compose

- The (18) trajectories NCC can always retrace those (3) of AM
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The new cell cycle switch
can emulate AM exactly.

For any initial conditions
of AM.

And for any rates of AM.
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Emulations are Modular

14




Nature seems to like good algorithms

U

5
Cell Cycle L] é_l o - }4}
(Close but) ? Exact Emulation
No Emulation t These additional feedbacks do exist

in real cell cycles (via indirections)

The cell cycle switch can exactly emulate AM
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M S X » X
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Nature seems to like good algorithms

- The cell cycle switch emulates

approximate majority SCIENTIFIC 02
RE Pg}RTS 3
- Hence it can switch as fast as Approximate
Majority (it can follow the same trajectories) @ The Cell Cycle Switch Computes
- And Approximate Majority is optimal! e, RO W\ Y

luca Cardelli’ & Atiila Csikasz-Nagy**
COMPUTATIONAL
BIOIOGY

-+ And it is as robust to perturbation as
Approximate Majority

- Which can resist large fluctuations

16




How to check for emulation

- How do we check a potential emulation morphism for all

possible initial conditions of the target?

+ Statically! Check conditions on the joint stoichiometric matrices of the two
networks under the mapping.

- How do we check a potential emulation morphism for all

possible rates of the target?

- Can't; but if one emulation is found, then the rates of the target network
can be changed arbitrarily and a related emulation will again exist.

Cardelll BMC Systems Biology 2014, B84
http:fwww blomedcentralcom/1752-0509/8/84
P BMC
Syste

RESEARCH ARTICLE Open Access

ms Biology

Morphisms of reaction networks that couple

structure to function
Luca Cardelli’* 17




Applications of Emulation

Model Reduction

Find reduced networks
Compute quotient CRNs

Find network symmetries
that may be of biological

iInterest

Morphism Generation

Find morphisms between networks

(e.g. all the ones for a fixed rate

Maximal aggregation of e
% polynomial dynamical systems

/| Luca Cardelli, Mirco Tribastone, Max Tschaikowski, and Andrea Vandin

PNAS September 6, 2017. 201702697; published ahead of print September 6, 2017.
https://doi.org/10.1073/pnas.1702697114

assignment)

QIPLOS |5

Benchmarks from
Sneddon et al., Nature Methods, 2011

3538944 262146 2292 4.61E+4 222 7.65E+4

PERSPECTIVE

e8 786432 65538 167 1.92E+3 167 3.68E+3
e7 172032 16386 122 8.15E+1 122 1.77E+2
eb 26864 4098 86 3.00E+0 86 7.29E+0
e5 7680 1026 58 1.54E-1 58 4.06E-1
eq 1536 258 37 9.00E-3 37 1.09E-1
e3 288 66 22 1.00E-3 22 3.00E-3
e2 48 18 12 1.00E-3 12 2.00E-3
Aggregation Emulation

reduction reduction

Efficient Switches in Biology and Computer

Science

Luca Cardelli"?, Rosa D. Hernansaiz-Ballesteros®, Neil Dalchau', Attila Csikasz-Nagy®**
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-volutionary Paths




Network Evolution

“new function”
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Fmulation Zoo
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Walks in Network Space
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Network Perturbations

Network

xa xb xc xd
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ya yb yc yd

A complex but robust
implementation of the
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Noise Reduction
iNn Biochemical Switches




Basic Switches (deterministic)

CCr
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B 1 3 3 4 85

68 1 3 3 & =

(A) Influence network diagrams
(B) Chemical reaction network diagrams and feedback loops

(C) Numerical solutions of the deterministic kinetics of the networks:
Horizontal axis is time
Vertical axis is species concentration

First some arbitrary initial conditions are chosen for AM.

Then the initial conditions of the other networks are chosen in such a
way that each trace of each of the other networks retraces exactly one
trace of AM.

This can be done for any initial conditions chosen for AM, and
indicates the potential of each of the other networks to operate as a
simpler switch.

Noise Reduction in Complex Biological Switches

Luca Cardelli¥2"", Attila Csikasz-Nagy**T, Neil Dalchau®", Mirco Tribastone™,
Max Tschaikowski*"

(To appear.) 26




Basic Switches (stochastic)

Horizontal axes is time

A B c D Vertical axes is number of molecules.
l—l (A) Influence networks.
Am D (B) Chemical Master Equation solution: probability distribution,

with color (in 10 bands from light = 0 to dark = 1) indicating the
probability that at time t there are y molecules of the single
indicated species.

(C) Chemical Master Equation solution: mean (solid lines) and
standard deviation (color bands) for the species in the network.
(D) Central Limit Approximation solution: mean (solid lines) and
standard deviation (color bands) for the species in the

network.

-

N

Mi ¥:| E

Disentangle the contribution of

] complexity to stochasticity
1 . .
cer I—j Compare network noise on the baseline
| of deterministic emulation, across

networks of different size and struﬁure




More Complex Switches
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Horizontal axes are time, vertical axes are number of molecules.

(A) Influence networks.

(B) ODE solutions for comparison

(C) Chemical Master Equation solution: mean (solid lines) and standard deviation (color bands) for the species in the network.
(D) Central Limit Approximation solution: mean (black lines) and standard deviation (color bands) for the species in the network.
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INtrinsic Noise

Network
—— AM
— Ml

Sl
— CCr
— GW
—— NCC

o
o

-
T

Standard deviation
o
4]

Method
—— CME
0 1 2 3 4 =ieise GLA

Time

Complexity improves overall performance of the cell cycle switch. The performance of different networks was

evaluated by calculating the standard deviation of the main molecular states over time.

SCIENTIFIC
REPg}RTS

Article | OPEN

Noise Reduction in Complex Biological
Switches

Luca Cardelli , Attila Csikasz-Nagy, Neil Dalchau, Mirco Tribastone & Max Tschaikowski

Scientific Reports 6, Article number: 20214 Received: 21 August 2015
(2016) Accepted: 29 December 2015
doi:10.1038/srep20214 Published online: 08 February 2016

Standard deviations are calculated via numerical integration of the chemical master equation (CME) using the Visual GEC

software, and via numerical integration of the central limit approximation (CLA) in Matlab.

29




Extrinsic Noise

A AM Mi Si B

:” = 0.3

=
0.4 0.4 0.4 B, = Ml and Sl have the same number
3 03 . ) 0.3 0.3 § 0.2 of spedies and reactions.
%
P= ek x b=l
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% cCr GW Network
c " g &
© 0.4 0.4 x 0® 0.4
o - * o SCIENTIFIC
2 03 . = 03 %y 0.3 REPLIRTS
2] Mgk Wb x
g 0.2 0.2 i "‘&3".‘}* "o 0.2 - Article | OPEN
0.1 0.1 . ’%éf* 0.1 e . N01'se Reduction in Complex Biological
0 £ 9 s ot E i 5 . i Switches
0 0 0.5 1 0 0.5 1 15 Luca Cardelli B, Attila Csikasz-Nagy, Neil Dalchau, Mirco Tribastone & Max Tschaikowski
log(Total parameter variation) Scientific Reports 6, Article number: 20214 Received: 21 August 2015
(2016) Accepted: 29 December 2015
doi:10.1038/srep20214 Published online: 08 February 2016

Complexity can confer robustness to extrinsic noise.

Extrinsic noise is introduced by randomly perturbing all the reaction rates (separately but from the same distribution) of each model. (So the total
variation in more complex models is actually higher.)

Variations in network behaviour is assessed in comparison to the default parameters, in which allr eaction rates are set equal to 1.
Network variation is quantified using the summed Wasserstein metric over the whole probability distribution over time. 30




Noise vs. Complexity

- With corresponding initial conditions, all studied networks show the

same mean behavior

- CCremulating AM is the simplest explanation of the core cell cycle

switching function

- Many other biological switches can be so reduced to an algorithm

with well-understood properties

- On the basis of kinetic similarity of mean behavior, we show
variations in noise behavior (both intrinsic and extrinsic).

- Noise tends to decrease with complexity, but this also depends on

network structure and not directly on total molecular counts

31
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Networks are Algorithms

- They are methods for achieving a function

- We need to understand how these methods relate to each other
- In addition to how and how well they implement function
- Algorithms can be obfuscated, and nature can obfuscate networks

- Network emulation can be checked statically

+ By stoichiometric/reaction-rate (structural) properties
- That is, no need to compare ODE (functional) properties
- For any initial conditions and rates of (one of) the networks

- We can efficiently discover emulations

- Automatic model reduction of large networks 33




Interpretations of Network Morphisms

Explanation of network structure

E.g. we know that the main function of Delta-Notch is to stabilize the system in one of two states. AM is the quintessential network that
embodies fast robust bistability. The stoichiomorphism from Delta-Notch to AM “explains” what Delta-Notch (normally) does, and exactly
how well it can do it.

Robust implementation of simpler function

Redundant symmetries are implicit in the stoichiomorphism relationships

Neutral paths in network space (evolution)

If an evolutionary event happens to be a stoichiomorphism, or close to it, it will not be immediately selected against, because it is
"kinetically neutral”.

This allows the network to increase its complexity without kinetic penalty.
Later, the extra degrees of freedom can lead to kinetic differentiation.
But meanwhile, the organism can explore variations of network structure.

Network refinement

Emulations are not about abstraction / coarse-graining that preserve behavior,
on the contrary, they are about refinement / fine-graining that preserve behavior.

They map out successive refinements of simple networks.

34




Network Emulation Morphism FAQ

What guarantees emulation?

Reactant morphism + stoichiomorphism: static, state-independent (structural) conditions

How do you find them?

Emulation Theorem => they do not depend on initial conditions
Change of Rates Theorem => can look for rate-1 morphisms
E.g. test all possible rate-1 homomorphism between two networks to see if they are stoichiomorphisms

How common are they?

Likely relatively rare, but still many useful ones => richness of networks space
Approximate emulations exist too

How useful are they?

Establish structural, algorithmic, (non-accidental) reasons for kinetic similarity
Explain simple behavior “facets” of complicated networks
Investigate evolutionary paths (maybe)

How brittle are they?

Will a perturbed trajectory of the source network converge to a trajectory of the target network?
What about other reaction kinetics?
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