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Mapping one network into another
 We would like simple understanding of complex systems

 Subnetworks, motifs, model reduction, ...

 But we also want to preserve meaning
 What is a good model of a cat?

 Understanding how complex systems may arise from 
simpler systems

 How to reconcile?
 Look for relationships between large (complex) and small (simple) 

networks that preserve structure and function.
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Norbert Wiener
Pioneer of stochastic processes 
and inventor of Cybernetics.

“The best material model of a 
cat is another, or preferably the 
same, cat”



Comparing networks by morphing them
 How can we compare different networks?

 Different number of species
 Different number of reactions
 Apparently unrelated connectivity

 How is structure related to function and performance?
 Does antagonism (in network structure) guarantee bistability (in function)?

 We morph networks onto one another (structurally)
so that they emulate each other (‘s function)
 Deterministic version of simulation of reactive systems
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Morphisms of Antagonistic 
Networks



Antagonistic Networks
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1 vs. 1 
Mutual Inhibition &
Self Activation

1 vs. 1 
Mutual Inhibition &
Mutual Anti-activation

Cell cycle transitions

Polarity establishment

Gene networks

Septation Initiation

3 vs. 3

The “new” cell cycle switch

MI SI

NCC

2 vs. 2

activation
inhibition

Delta-Notch



 Approximate Majority (AM) Algorithm
 Uses a third “undecided” population b
 Disagreements cause agents to become undecided
 Undecided agents agree with any non-undecided agent

A Consensus Algorithm
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x yb

x + yr y + b
y + xr x + b
b + xr x + x
b + yr y + y

catalysis

chemical
reaction
network

x=y=5000
b=0

x=5500
y=4500
b=0



A Biological Implementation
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Approximate Majority (AM) Epigenetic Switch

x yb

1) Bistable
Even when initially x=y (stochastically)

2) Fast (asymptotically optimal)
O(log n) convergence time

3) Robust to perturbation
above a threshold, initial majority wins whp

2007 2007



Not always that simple
 The epigenetic switch seems a direct biological 

implementation of an algorithm
 Although we may have to qualify that with some notion of 

approximation of the (enzymatic) kinetics

 In most cases the biological implementation seems 
more indirect or obfuscated
 “Nature is subtle but not malicious - Einstein” Ha! think again!
 Other implementations of Approximate Majority seem more 

convoluted and approximate
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The Triplet Model of Influence
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=
inhibition

activation

inhibit x

activate x

high
(modified)

low
(unmodified)

x is high x is low

Usually modeled by 
sigmoid (e.g. Hill or 
Reinitz) functions We model them by 

4 mass action reactions over 
3 species x0, x1, x2

They actually implement a 
Hill function of coefficient 2:

activation
inhibition

(mass action) catalysis

r21 = 0.1
r10 = 10.0
r01 = 0.1
r12 = 10.0

triplet motif

biological mechanism:
(e.g.:) multisite 
phosphorylation

AM

=

Approximate Majority

For example:

x0 + x2r01 x2 + x1



Network Emulation MI emulates AM
 For any rates and initial conditions of AM, we can find some rates and initial 

conditions of MI such that the (6) trajectories of MI retrace those (3) of AM:

 How do we find these matching parameters? By a network morphism! 10
(6 species on 3 trajectories) (3 species on 3 trajectories)

~y,z⇢ x
MI AM

initialize: 
z = x

~y = x

(y2 = x0
y1 = x1
y0 = x0)

(3 species)



CRN Morphisms
A CRN morphism from to 
written 

is a pair of maps 𝒮 ℛ

a species map 𝒮

a reaction map ℛ

11

Mappings (symmetries) 
between two networks

AM

MI

𝒎𝓢
𝐓 ȉ 𝝆 = 𝝆ෝ ȉ 𝒎𝓡

𝐓

𝝋 ȉ 𝒎𝓡 = 𝒎𝓢 ȉ 𝝋ෝ

reactant morphism

stoichiomorphism

preserve enough
network structure
preserve enough
chemical stoichiometry

𝝋 is the stoichiometric matrix and 𝝆 is the related reactant matrix. 𝒎𝓢 and 
𝒎𝓡 are the characteristic 0-1 matrices of the morphism maps 𝑚𝒮 (on 
species) and 𝑚ℛ (on reactions). −𝐓 is transpose.



Network Emulation: NCC emulates MI
 For any rates and initial conditions of MI we can find some rates and initial 

conditions of NCC such that the (18) trajectories of NCC retrace those (6) of MI
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(6 species on 6 trajectories)

MI

(18 species on 6 trajectories)

NCC

z,r,p ⇢ z
y,q,s ⇢ y

initialize 
z,r,p = z
y,q,s = y

(3 species each)

NCC
MI



Emulations Compose

13

 The (18) trajectories NCC can always retrace those (3) of AM

(18 species on 3 trajectories) (3 species on 3 trajectories)

AMNCC

z,~y⇢ x

z,r,p ⇢ x
~y,~q,~s ⇢ x

z,r,p ⇢ z
y,q,s ⇢ y

The new cell cycle switch 
can emulate AM exactly.
For any initial conditions 
of AM.

And for any rates of AM.



Emulations are Modular
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Nature seems to like good algorithms
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CCr

CC
(Close but)

No Emulation
Exact Emulation

These additional feedbacks do exist 
in real cell cycles (via indirections)

The cell cycle switch can exactly emulate AM
NCC MI AM

G2/M Transition

Cell Cycle



 The cell cycle switch emulates 
approximate majority
 Hence it can switch as fast as Approximate 

Majority (it can follow the same trajectories)
 And Approximate Majority is optimal!

 And it is as robust to perturbation as 
Approximate Majority
 Which can resist large fluctuations
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Nature seems to like good algorithms



How to check for emulation
 How do we check a potential emulation morphism for all 

possible initial conditions of the target?
 Statically! Check conditions on the joint stoichiometric matrices of the two 

networks under the mapping.

 How do we check a potential emulation morphism for all 
possible rates of the target? 
 Can’t; but if one emulation is found, then the rates of the target network 

can be changed arbitrarily and a related emulation will again exist.
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Applications of Emulation
 Model Reduction

 Find reduced networks
 Compute quotient CRNs
 Find network symmetries 

that may be of biological interest

 Morphism Generation
 Find morphisms between networks

(e.g. all the ones for a fixed rate assignment)
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Aggregation
reduction

Emulation
reduction



Network Morphisms as 
Evolutionary Paths



Network Evolution
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“same function”

“new function”



Emulation Zoo
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p ⇢ r

q ⇢ s

p ⇢ r
q ⇢ s

p ⇢ r

q ⇢ s

MI

QI

AM

z,~y⇢ xz,r ⇢ z
y,s ⇢ y

z,~y ⇢ z
s,~r ⇢ y

z,~y⇢ x

CCr

z,~y ⇢ x r,~s ⇢ x

SI

r,~s ⇢ x

s ⇢ y
r ⇢ z

x ⇢ z
s,~r ⇢ y

s ⇢ y

SCr

SCr’

CCr’

r ⇢ z

r,~s ⇢ x

r,s ⇢ x

NCC

GW

z,~y ⇢ z
s,~r ⇢ y

DN

emulation (transitive)

r ⇢ x

~s ⇢ x

AMs

AMr



Walks in Network Space
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p ⇢ r

q ⇢ s

p ⇢ r
q ⇢ s

p ⇢ r

q ⇢ s

MI

QI

AM

z,~y⇢ xz,r ⇢ z
y,s ⇢ y

z,~y ⇢ z
s,~r ⇢ y

z,~y⇢ x

CCr

z,~y ⇢ x r,~s ⇢ x

SI

r,~s ⇢ x

s ⇢ y
r ⇢ z

x ⇢ z
s,~r ⇢ y

s ⇢ y

SCr

SCr’

CCr’

r ⇢ z

r,~s ⇢ x

r,s ⇢ x

NCC

GW

z,~y ⇢ z
s,~r ⇢ y

DN

r ⇢ x

~s ⇢ x

AMs

AMr

Neutral paths 
in network space

Side
jumps

emulation (transitive)



Another 
Zoo
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Network Perturbations

24

Network               Normal Behavior         Removing each link in turn

A complex but robust 
implementation of the
simple network

dead

never dead “on average”



Noise Reduction 
in Biochemical Switches



Basic Switches (deterministic)
(A) Influence network diagrams
(B) Chemical reaction network diagrams and feedback loops
(C) Numerical solutions of the deterministic kinetics of the networks:

Horizontal axis is time
Vertical axis is species concentration

First some arbitrary initial conditions are chosen for AM. 
Then the initial conditions of the other networks are chosen in such a 
way that each trace of each of the other networks retraces exactly one 
trace of AM. 
This can be done for any initial conditions chosen for AM, and 
indicates the potential of each of the other networks to operate as a 
simpler switch.

26(To appear.)



Basic Switches (stochastic)
Horizontal axes is time
Vertical axes is number of molecules. 

(A) Influence networks. 
(B) Chemical Master Equation solution: probability distribution, 
with color (in 10 bands from light = 0 to dark = 1) indicating the 
probability that at time t there are y molecules of the single 
indicated species. 
(C) Chemical Master Equation solution: mean (solid lines) and 
standard deviation (color bands) for the species in the network.
(D) Central Limit Approximation solution: mean (solid lines) and 
standard deviation (color bands) for the species in the
network.

Disentangle the contribution of 
complexity to stochasticity

Compare network noise on the baseline 
of deterministic emulation, across 
networks of different size and structure27



More Complex Switches

Horizontal axes are time, vertical axes are number of molecules. 
(A) Influence networks. 
(B) ODE solutions for comparison
(C) Chemical Master Equation solution: mean (solid lines) and standard deviation (color bands) for the species in the network. 
(D) Central Limit Approximation solution: mean (black lines) and standard deviation (color bands) for the species in the network. 28



Intrinsic Noise
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Complexity improves overall performance of the cell cycle switch. The performance of different networks was
evaluated by calculating the standard deviation of the main molecular states over time.
Standard deviations are calculated via numerical integration of the chemical master equation (CME) using the Visual GEC
software, and via numerical integration of the central limit approximation (CLA) in Matlab.



Extrinsic Noise

Complexity can confer robustness to extrinsic noise. 
Extrinsic noise is introduced by randomly perturbing all the reaction rates (separately but from the same distribution) of each model. (So the total 
variation in more complex models is actually higher.)
Variations in network behaviour is assessed in comparison to the default parameters, in which allr eaction rates are set equal to 1. 
Network variation is quantified using the summed Wasserstein metric over the whole probability distribution over time. 30

MI and SI have the same number 
of species and reactions.



Noise vs. Complexity
 With corresponding initial conditions, all studied networks show the 

same mean behavior
 CCr emulating AM is the simplest explanation of the core cell cycle 

switching function
 Many other biological switches can be so reduced to an algorithm 

with well-understood properties
 On the basis of kinetic similarity of mean behavior, we show 

variations in noise behavior (both intrinsic and extrinsic).
 Noise tends to decrease with complexity, but this also depends on 

network structure and not directly on total molecular counts
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Conclusions



Networks are Algorithms
 They are methods for achieving a function

 We need to understand how these methods relate to each other
 In addition to how and how well they implement function
 Algorithms can be obfuscated, and nature can obfuscate networks

 Network emulation can be checked statically
 By stoichiometric/reaction-rate (structural) properties
 That is, no need to compare ODE (functional) properties
 For any initial conditions and rates of (one of) the networks

 We can efficiently discover emulations 
 Automatic model reduction of large networks 33



Interpretations of Network Morphisms
 Explanation of network structure

 E.g. we know that the main function of Delta-Notch is to stabilize the system in one of two states. AM is the quintessential network that 
embodies fast robust bistability. The stoichiomorphism from Delta-Notch to AM “explains” what Delta-Notch (normally) does, and exactly 
how well it can do it.

 Robust implementation of simpler function
 Redundant symmetries are implicit in the stoichiomorphism relationships

 Neutral paths in network space (evolution)
 If an evolutionary event happens to be a stoichiomorphism, or close to it, it will not be immediately selected against, because it is 

“kinetically neutral”.
 This allows the network to increase its complexity without kinetic penalty.
 Later, the extra degrees of freedom can lead to kinetic differentiation.
 But meanwhile, the organism can explore variations of network structure.

 Network refinement
 Emulations are not about abstraction / coarse-graining that preserve behavior, 

on the contrary, they are about refinement / fine-graining that preserve behavior.
 They map out successive refinements of simple networks.
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Network Emulation Morphism FAQ
 What guarantees emulation?

 Reactant morphism + stoichiomorphism: static, state-independent (structural) conditions

 How do you find them?
 Emulation Theorem => they do not depend on initial conditions
 Change of Rates Theorem => can look for rate-1 morphisms
 E.g. test all possible rate-1 homomorphism between two networks to see if they are stoichiomorphisms

 How common are they?
 Likely relatively rare, but still many useful ones => richness of networks space
 Approximate emulations exist too

 How useful are they?
 Establish structural, algorithmic, (non-accidental) reasons for kinetic similarity
 Explain simple behavior “facets” of complicated networks
 Investigate evolutionary paths (maybe)

 How brittle are they?
 Will a perturbed trajectory of the source network converge to a trajectory of the target network?
 What about other reaction kinetics?
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